Community smells in software engineering: A systematic literature review
Main Article Content
Abstract
As a relatively new research field, community smells have received a lot of attention in recent years. This study aims to identify, evaluate, and synthesize previous works on community smells using the Systematic Literature Review (SLR) Protocol. Initially, a total of 125 research papers were retrieved from three electronic databases based on our defined search string. 21 papers were finally selected based on the selection criteria to be synthesized and analyzed in detail. After analyzing the documents, the research trends and approaches adopted in community smell research are discussed and presented Besides, the gaps in this domain have been identified. We concluded that more studies need to be done in this specific area to address the gaps.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ahammed, T., Asad, M., & Sakib, K. (2020, December). Understanding the Involvement of Developers in Missing Link Community Smell: An exploratory Study on Apache Projects. In QuASoQ@ APSEC (pp. 64-70).
Ahammed, T., Ahmed, S., & Khan, M. S. A. (2021a). Do Missing Link Community Smell Affect Developers Productivity: An Empirical Study. Knowledge Engineering and Data Science, 4(1), 29-37. DOI: https://doi.org/10.17977/um018v4i12021p29-37
Ahammed, T., Asad, M., & Sakib, K. (2021b). Understanding the Relationship between Missing Link Community Smell and Fix-inducing Changes. In ENASE (pp. 469-475). DOI: https://doi.org/10.5220/0010500604690475
Almarimi, N., Ouni, A., & Mkaouer, M. W. (2020a). Learning to detect community smells in open source software projects. Knowledge-Based Systems, 204, 106201. DOI: https://doi.org/10.1016/j.knosys.2020.106201 DOI: https://doi.org/10.1016/j.knosys.2020.106201
Almarimi, N., Ouni, A., Chouchen, M., Saidani, I., & Mkaouer, M. W. (2020b, June). On the detection of community smells using genetic programming-based ensemble classifier chain. In Proceedings of the 15th International Conference on Global Software Engineering (pp. 43-54). DOI: https://doi.org/10.1145/3372787.3390439 DOI: https://doi.org/10.1145/3372787.3390439
Almarimi, N., Ouni, A., Chouchen, M., & Mkaouer, M. W. (2021, August). csDetector: an open source tool for community smells detection. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (pp. 1560-1564). DOI: https://doi.org/10.1145/3468264.3473121 DOI: https://doi.org/10.1145/3468264.3473121
Catolino, G., Palomba, F., Tamburri, D. A., Serebrenik, A., & Ferrucci, F. (2019a, May). Gender diversity and women in software teams: How do they affect community smells?. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS) (pp. 11-20). IEEE. DOI: 10.1109/ICSE-SEIS.2019.00010 DOI: https://doi.org/10.1109/ICSE-SEIS.2019.00010
Catolino, G., Palomba, F., Tamburri, D. A., Serebrenik, A., & Ferrucci, F. (2019b). Gender diversity and community smells: insights from the trenches. IEEE Software, 37(1), 10-16. DOI: 10.1109/MS.2019.2944594 DOI: https://doi.org/10.1109/MS.2019.2944594
Catolino, G., Palomba, F., Tamburri, D. A., Serebrenik, A., & Ferrucci, F. (2020, June). Refactoring community smells in the wild: the practitioner's field manual. In Proceedings of the acm/ieee 42nd international conference on software engineering: Software engineering in society (pp. 25-34). DOI: https://doi.org/10.1145/3377815.3381380 DOI: https://doi.org/10.1145/3377815.3381380
Catolino, G., Palomba, F., Tamburri, D. A., & Serebrenik, A. (2021, May). Understanding community smells variability: A statistical approach. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS) (pp. 77-86). IEEE. DOI: 10.1109/ICSE-Companion52605.2021.00086 DOI: https://doi.org/10.1109/ICSE-SEIS52602.2021.00017
De Stefano, M., Pecorelli, F., Tamburri, D. A., Palomba, F., & De Lucia, A. (2020, June). Splicing community patterns and smells: A preliminary study. In Proceedings of the ieee/acm 42nd international conference on software engineering workshops (pp. 703-710). DOI: https://doi.org/10.1145/3387940.3392204Software DOI: https://doi.org/10.1145/3387940.3392204
Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting empirical methods for software engineering research. Guide to advanced empirical software engineering, 285-311. DOI: 10.1007/978-1-84800-044-5_11 DOI: https://doi.org/10.1007/978-1-84800-044-5_11
Ferreira, M., Avelino, G., Valente, M. T., & Ferreira, K. A. (2016, September). A comparative study of algorithms for estimating truck factor. In 2016 X Brazilian Symposium on Software Components, Architectures and Reuse (SBCARS) (pp. 91-100). IEEE. DOI: 10.1109/SBCARS.2016.20 DOI: https://doi.org/10.1109/SBCARS.2016.20
Huang, Z., Shao, Z., Fan, G., Gao, J., Zhou, Z., Yang, K., & Yang, X. (2021, May). Predicting community smells’ occurrence on individual developers by sentiments. In 2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC) (pp. 230-241). IEEE. DOI: 10.1109/ICPC52881.2021.00030 DOI: https://doi.org/10.1109/ICPC52881.2021.00030
Huang, Z. J., Shao, Z. Q., Fan, G. S., Yu, H. Q., Yang, X. G., & Yang, K. (2022). Community smell occurrence prediction on multi-granularity by developer-oriented features and process metrics. Journal of Computer Science and Technology, 37(1), 182-206. DOI: https://doi.org/10.1007/s11390-021-1596-1 DOI: https://doi.org/10.1007/s11390-021-1596-1
Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering–a systematic literature review. Information and software technology, 51(1), 7-15. DOI: https://doi.org/10.1016/j.infsof.2008.09.009 DOI: https://doi.org/10.1016/j.infsof.2008.09.009
Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., & Linkman, S. (2010). Systematic literature reviews in software engineering–a tertiary study. Information and software technology, 52(8), 792-805. DOI: https://doi.org/10.1016/j.infsof.2010.03.006 DOI: https://doi.org/10.1016/j.infsof.2010.03.006
Palomba, F., Tamburri, D. A., Fontana, F. A., Oliveto, R., Zaidman, A., & Serebrenik, A. (2018). Beyond technical aspects: How do community smells influence the intensity of code smells?. IEEE transactions on software engineering, 47(1), 108-129. DOI: 10.1109/TSE.2018.2883603 DOI: https://doi.org/10.1109/TSE.2018.2883603
Palomba, F., & Tamburri, D. A. (2021). Predicting the emergence of community smells using socio-technical metrics: A machine-learning approach. Journal of Systems and Software, 171, 110847. DOI: https://doi.org/10.1016/j.jss.2020.110847 DOI: https://doi.org/10.1016/j.jss.2020.110847
Sarmento, C., Massoni, T., Serebrenik, A., Catolino, G., Tamburri, D., & Palomba, F. (2022, March). Gender Diversity and Community Smells: a Double-Replication Study on Brazilian Software Teams. In 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER) (pp. 273-283). IEEE. DOI: 10.1109/SANER53432.2022.00043 DOI: https://doi.org/10.1109/SANER53432.2022.00043
Tamburri, D. A., & Di Nitto, E. (2015, May). When software architecture leads to social debt. In 2015 12th Working IEEE/IFIP Conference on Software Architecture (pp. 61-64). IEEE. DOI: 10.1109/WICSA.2015.16 DOI: https://doi.org/10.1109/WICSA.2015.16
Tamburri, D. A., Kruchten, P., Lago, P., & Vliet, H. V. (2015). Social debt in software engineering: insights from industry. Journal of Internet Services and Applications, 6, 1-17. DOI: https://doi.org/10.1186/s13174-015-0024-6
Tamburri, D. A., Kazman, R., & Fahimi, H. (2016). The architect's role in community shepherding. IEEE Software, 33(6), 70-79. DOI: 10.1109/MS.2016.144 DOI: https://doi.org/10.1109/MS.2016.144
Tamburri, D. A. (2019a). Software architecture social debt: Managing the incommunicability factor. IEEE Transactions on Computational Social Systems, 6(1), 20-37. DOI: 10.1109/TCSS.2018.2886433 DOI: https://doi.org/10.1109/TCSS.2018.2886433
Tamburri, D., Kazman, R., & Van den Heuvel, W. J. (2019b). Splicing community and software architecture smells in agile teams: An industrial study. DOI: https://doi.org/10.24251/HICSS.2019.843
Tamburri, D. A., Palomba, F., & Kazman, R. (2019c). Exploring community smells in open-source: An automated approach. IEEE Transactions on software Engineering, 47(3), 630-652. DOI: 10.1109/TSE.2019.2901490 DOI: https://doi.org/10.1109/TSE.2019.2901490