Biological processes associated with breast cancer subtypes: A meta-analysis study
Main Article Content
Abstract
This study delves into the modular mechanisms underlying various breast cancer subtypes, including Basal-like, HER2, Luminal A, Luminal B, Normal-like, and the differences between Luminal A and B. Through microarrays meta-analyses, the research identifies potential biomarkers for these subtypes by comparing each with the normal state, revealing 408, 429, 531, 346, 113, and 1085 differentially expressed genes associated with Basal-like, HER2, Luminal A, Luminal B, Normal-like, and Luminal A vs Luminal B, respectively. Significant enrichment of top GO terms like 'nuclear-transcribed mRNA catabolic process nonsense-mediated decay', 'SRP-dependent cotranslational protein targeting to membrane', 'translational initiation', 'rRNA processing', and 'viral transcription and response to corticosteroid' was observed in different breast cancer subtypes. Specifically, in the comparison between Luminal A and B cancers, 'tumor necrosis factor-mediated signaling' was the most enriched pathway. The most differentially expressed genes in this comparison were 'TOP2A, AURKA, RRM2, CDK1, and MDA2L1' (up-regulated), and 'LTF and MYBPC1' (down-regulated). These insights could be pivotal in developing new clinical-genomic models and identifying novel therapeutic strategies for specific molecular subgroups of breast cancer. The present study aims to investigate the modular mechanisms underlying different breast cancer subtypes and identifies potential biomarkers for Basal-like subtype (Normal vs Basal-like), HER2 subtype (Normal vs HER2), Luminal A subtype (Normal vs Luminal A), Luminal B subtype (Normal vs Luminal B), Normal-like subtype (Normal vs Normal-like) and between Luminal A and B (Luminal A vs Luminal B) using microarrays meta-analyses. 408, 429, 531, 346, 113, and 1085 differentially expressed genes were associated with Basal-like, HER2, Luminal A, Luminal B, Normal-like subtypes, and ‘Luminal A vs Luminal B’, respectively. Top GO terms significantly enriched for different breast cancer subtypes include ‘nuclear-transcribed mRNA catabolic process nonsense-mediated decay’, ‘SRP-dependent cotranslational protein targeting to membrane’, ‘translational initiation’, ‘rRNA processing’, and ‘viral transcription and response to corticosteroid’. The comparison between Luminal A and B cancers found that ‘tumor necrosis factor-mediated signaling’ was the most enriched pathway and the most differentially expressed genes included ‘sTOP2A, AURKA, RRM2, CDK1 and MDA2L1 (up-regulated)’ and ‘LTF and MYBPC1 (down-regulated)’. These findings may contribute to defining new clinical-genomic models and identifying new therapeutic strategies in the specific molecular subgroups.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Alexa, A., & Rahnenführer, J. (2009). Gene set enrichment analysis with topGO. Bioconductor Improv, 27, 1-26.
Balkwill, F. (2009). Tumor necrosis factor and cancer. Nature Reviews Cancer, 9(5), 361-371. https://doi.org/10.1038/nrc2628 DOI: https://doi.org/10.1038/nrc2628
Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372(9), 793-795. https://doi.org/10.1056/NEJMp1500523 DOI: https://doi.org/10.1056/NEJMp1500523
Creighton, C. J. (2012). The molecular profile of luminal B breast cancer. Biologics, 6, 289-297. https://doi.org/10.2147/BTT.S29923 DOI: https://doi.org/10.2147/BTT.S29923
Dowsett, M., Nielsen, T. O., A’Hern, R., Bartlett, J., Coombes, R. C., Cuzick, J., Ellis, M., Henry, N. L., Hugh, J. C., Lively, T., McShane, L., Paik, S., Penault-Llorca, F., Prudkin, L., Regan, M., Salter, J., Sotiriou, C., Smith, I. E., Viale, G., Zujewski, J. A., & Hayes, D. F. (2011). International Ki-67 in Breast Cancer Working Group. Journal of the National Cancer Institute, 103(22), 1656-1664. https://doi.org/10.1093/jnci/djr393 DOI: https://doi.org/10.1093/jnci/djr393
Einbeigi, Z., Bergman, A., Kindblom, L. G., Martinsson, T., Meis-Kindblom, J. M., Nordling, M., Suurküla, M., Wahlström, J., Wallgren, A., & Karlsson, P. (2001). A Founder Mutation of the BRCA1 Gene in Western Sweden Associated with a High Incidence of Breast and Ovarian Cancer. European Journal of Cancer, 37(15), 1904-1909. https://doi.org/10.1016/S0959-8049(01)00223-4 DOI: https://doi.org/10.1016/S0959-8049(01)00223-4
Ellis, M. J., Tao, Y., Luo, J., A’Hern, R., Evans, D. B., Bhatnagar, A. S., Chaudri Ross, H. A., von Kameke, A., Miller, W. R., Smith, I., Eiermann, W., & Dowsett, M. (2008). Outcome prediction for estrogen receptor-positive breast cancer based on post neoadjuvant endocrine therapy tumor characteristics. Journal of the National Cancer Institute, 100(19), 1380-1388. https://doi.org/10.1093/jnci/djn309 DOI: https://doi.org/10.1093/jnci/djn309
Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. New England Journal of Medicine, 363(20), 1938-1948. https://doi.org/10.1056/NEJMra1001389 DOI: https://doi.org/10.1056/NEJMra1001389
Geyer, F. C., Rodrigues, D. N., Weigelt, B., & Reis-Filho, J. S. (2012). Molecular classification of estrogen receptor-positive/luminal breast cancers. Advances in Anatomic Pathology, 19(1), 39-53. https://doi.org/10.1097/PAP.0b013e31823fafa0 DOI: https://doi.org/10.1097/PAP.0b013e31823fafa0
Goldhirsch, A., Winer, E. P., Coates, A. S., Gelber, R. D., Piccart-Gebhart, M., Thürlimann, B., & Senn, H. J. (2013). Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Annals of Oncology, 24(9), 2206-2223. https://doi.org/10.1093/annonc/mdt303 DOI: https://doi.org/10.1093/annonc/mdt303
Harbeck, N., Gnant, M., Thomssen, C., & St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2016. Annals of Oncology, 27(8), 1478-1488. https://doi.org/10.1093/annonc/mdw173 DOI: https://doi.org/10.1093/annonc/mdw173
Henras, A. K., Soudet, J., Gérus, M., Lebaron, S., Caizergues-Ferrer, M., Mougin, A., & Henry, Y. (2008). The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Molecular Life Sciences, 65(15), 2334–2359. https://doi.org/10.1007/s00018-008-8027-0 DOI: https://doi.org/10.1007/s00018-008-8027-0
Inácio, A., Silva, A. L., & Pinto, J. (2011). Nonsense-mediated mRNA decay: mechanisms and human disease. Journal of Molecular Endocrinology, 47(1), R1-R15. https://doi.org/10.1530/JME-11-0020
Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., & Speed, T.P. (2003). Exploration, Normalization, and Summaries of High-Density Oligonucleotide Array Probe Level Data. Biostatistics, 4(2), 249-264. https://doi.org/10.1093/biostatistics/4.2.249 DOI: https://doi.org/10.1093/biostatistics/4.2.249
Jackson, R. J., Hellen, C. U., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology, 11(2), 113-127. https://doi.org/10.1038/nrm2838 DOI: https://doi.org/10.1038/nrm2838
Kalimutho, M., Parsons, K., Mittal, D., López, J. A., Srihari, S., & Khanna, K. K. (2015). Targeted therapies for triple‐negative breast cancer: combating a stubborn disease. Trends in Pharmacological Sciences, 36(12), 822-846. https://doi.org/10.1016/j.tips.2015.08.009 DOI: https://doi.org/10.1016/j.tips.2015.08.009
Leonard, W. J., & Lin, J. X. (2000). Cytokine receptor signaling pathways. Journal of Allergy and Clinical Immunology, 105(5), 877-888. https://doi.org/10.1067/mai.2000.106465 DOI: https://doi.org/10.1067/mai.2000.106899
Locksley, R. M., Killeen, N., & Lenardo, M. J. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 104(4), 487-501. https://doi.org/10.1016/S0092-8674(01)00237-9 DOI: https://doi.org/10.1016/S0092-8674(01)00237-9
Loi, S., Sotiriou, C., Haibe-Kains, B., Lallemand, F., Conus, N. M., Piccart, M. J., Speed, T. P., & McArthur, G. A. (2009). Gene expression profiling identifies activated growth factor signaling in poor prognosis (Luminal-B) estrogen receptor-positive breast cancer. BMC Medical Genomics, 2, 37. https://doi.org/10.1186/1755-8794-2-37 DOI: https://doi.org/10.1186/1755-8794-2-37
Mabbott, N.A, Kenneth Baillie, J., Hume, D.A., & Freeman, T.C. (2004). Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology, 215(9-10), 724-736. https://doi.org/10.1016/j.imbio.2010.05.012 DOI: https://doi.org/10.1016/j.imbio.2010.05.012
O'Shea, J. J., & Murray, P. J. (2008). Cytokine signaling modules in inflammatory responses. Immunity, 28(4), 477-487. https://doi.org/10.1016/j.immuni.2008.03.002 DOI: https://doi.org/10.1016/j.immuni.2008.03.002
Perou, C. M., Sørlie, T., Eisen, M. B., Van De Rijn, M., Jeffrey, S. S., Rees, C. A., ... & Botstein, D. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747-752. https://doi.org/10.1038/35021093 DOI: https://doi.org/10.1038/35021093
Prasad, V. (2016). Perspective: The precision-oncology illusion. Nature, 537(7620), S63. https://doi.org/10.1038/537S63a DOI: https://doi.org/10.1038/537S63a
Reis-Filho, J. S., Weigelt, B., Fumagalli, D., & Sotiriou, C. (2010). Molecular profiling: moving away from tumor philately. Science Translational Medicine, 2(47), 47ps43. https://doi.org/10.1126/scitranslmed.3001329 DOI: https://doi.org/10.1126/scitranslmed.3001329
Sawicki, S. G., Sawicki, D. L., Youn, J. W., Whitt, M. A., Lee, J. Y., & Lyles, D. S. (2007). Functional and genetic analysis of viral polymerase gene-associated cis-acting RNA elements. Archives of Virology, 152(5), 989-1009. https://doi.org/10.1007/s00705-006-0906-4
Schilsky, R. L. (2010). Personalized medicine in oncology: The future is now. Nature Reviews Drug Discovery, 9(5), 363-366. https://doi.org/10.1038/nrd3132 DOI: https://doi.org/10.1038/nrd3181
Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer Statistics, 2019. CA: A Cancer Journal for Clinicians, 69(1), 7–34. https://doi.org/10.3322/caac.21551 DOI: https://doi.org/10.3322/caac.21551
Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., & Geisler, S. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences, 98(19), 10869-10874. https://doi.org/10.1073/pnas.191367098 DOI: https://doi.org/10.1073/pnas.191367098
Sørlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., Deng, S., Johnsen, H., Pesich, R., Geisler, S., Demeter, J., Perou, C. M., Lønning, P. E., Brown, P. O., Børresen-Dale, A., & Botstein, D. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences, 100(14), 8418-8423. https://doi.org/10.1073/pnas.0932692100 DOI: https://doi.org/10.1073/pnas.0932692100
Tan, P. K, Downey, T. J, Spitznagel Jr, E. L, Xu, P., Fu, D., Dimitrov, D. S, Lempicki, R. A, Raaka, B. M, & Cam, M. C. (2003). Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Research, 31(19), 5676-5684. https://doi.org/10.1093/nar/gkg763 DOI: https://doi.org/10.1093/nar/gkg763
Tsutsui, S., Ohno, S., Murakami, S., Kataoka, A., Kinoshita, J., & Hachitanda, Y. (2003). Prognostic significance of the coexpression of p53 protein and c-erbB2 in breast cancer. American Journal of Surgery, 185(2), 165-167. https://doi.org/10.1016/S0002-9610(02)01203-5 DOI: https://doi.org/10.1016/S0002-9610(02)01203-5
Walter, P., & Johnson, A. E. (1994). Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annual Review of Cell Biology, 10, 87-119. https://doi.org/10.1146/annurev.cb.10.110194.000511 DOI: https://doi.org/10.1146/annurev.cb.10.110194.000511