Biological processes associated with breast cancer subtypes: A meta-analysis study

Main Article Content

Najia El Aboudi
Faissal Ouardi
Mouna Ababou
Abdelilah Laraqui
Malika Mguil
Oubaida Elbiad
Bouabid Badaoui

Abstract

This study delves into the modular mechanisms underlying various breast cancer subtypes, including Basal-like, HER2, Luminal A, Luminal B, Normal-like, and the differences between Luminal A and B. Through microarrays meta-analyses, the research identifies potential biomarkers for these subtypes by comparing each with the normal state, revealing 408, 429, 531, 346, 113, and 1085 differentially expressed genes associated with Basal-like, HER2, Luminal A, Luminal B, Normal-like, and Luminal A vs Luminal B, respectively. Significant enrichment of top GO terms like 'nuclear-transcribed mRNA catabolic process nonsense-mediated decay', 'SRP-dependent cotranslational protein targeting to membrane', 'translational initiation', 'rRNA processing', and 'viral transcription and response to corticosteroid' was observed in different breast cancer subtypes. Specifically, in the comparison between Luminal A and B cancers, 'tumor necrosis factor-mediated signaling' was the most enriched pathway. The most differentially expressed genes in this comparison were 'TOP2A, AURKA, RRM2, CDK1, and MDA2L1' (up-regulated), and 'LTF and MYBPC1' (down-regulated). These insights could be pivotal in developing new clinical-genomic models and identifying novel therapeutic strategies for specific molecular subgroups of breast cancer. The present study aims to investigate the modular mechanisms underlying different breast cancer subtypes and identifies potential biomarkers for Basal-like subtype (Normal vs Basal-like), HER2 subtype (Normal vs HER2), Luminal A subtype (Normal vs Luminal A), Luminal B subtype (Normal vs Luminal B), Normal-like subtype (Normal vs Normal-like) and between Luminal A and B (Luminal A vs Luminal B) using microarrays meta-analyses. 408, 429, 531, 346, 113, and 1085 differentially expressed genes were associated with Basal-like, HER2, Luminal A, Luminal B, Normal-like subtypes, and ‘Luminal A vs Luminal B’, respectively. Top GO terms significantly enriched for different breast cancer subtypes include ‘nuclear-transcribed mRNA catabolic process nonsense-mediated decay’, ‘SRP-dependent cotranslational protein targeting to membrane’, ‘translational initiation’, ‘rRNA processing’, and ‘viral transcription and response to corticosteroid’. The comparison between Luminal A and B cancers found that ‘tumor necrosis factor-mediated signaling’ was the most enriched pathway and the most differentially expressed genes included ‘sTOP2A, AURKA, RRM2, CDK1 and MDA2L1 (up-regulated)’ and ‘LTF and MYBPC1 (down-regulated)’. These findings may contribute to defining new clinical-genomic models and identifying new therapeutic strategies in the specific molecular subgroups.

Metrics

Metrics Loading ...

Article Details

How to Cite
El Aboudi, N., Ouardi, F., Ababou, M., Laraqui, A., Mguil, M., Elbiad, O., & Badaoui, B. (2023). Biological processes associated with breast cancer subtypes: A meta-analysis study. Systematic Literature Review and Meta-Analysis Journal, 4(3), 11–27. https://doi.org/10.54480/slr-m.v4i3.43
Section
Articles

References

Alexa, A., & Rahnenführer, J. (2009). Gene set enrichment analysis with topGO. Bioconductor Improv, 27, 1-26.

Balkwill, F. (2009). Tumor necrosis factor and cancer. Nature Reviews Cancer, 9(5), 361-371. https://doi.org/10.1038/nrc2628 DOI: https://doi.org/10.1038/nrc2628

Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372(9), 793-795. https://doi.org/10.1056/NEJMp1500523 DOI: https://doi.org/10.1056/NEJMp1500523

Creighton, C. J. (2012). The molecular profile of luminal B breast cancer. Biologics, 6, 289-297. https://doi.org/10.2147/BTT.S29923 DOI: https://doi.org/10.2147/BTT.S29923

Dowsett, M., Nielsen, T. O., A’Hern, R., Bartlett, J., Coombes, R. C., Cuzick, J., Ellis, M., Henry, N. L., Hugh, J. C., Lively, T., McShane, L., Paik, S., Penault-Llorca, F., Prudkin, L., Regan, M., Salter, J., Sotiriou, C., Smith, I. E., Viale, G., Zujewski, J. A., & Hayes, D. F. (2011). International Ki-67 in Breast Cancer Working Group. Journal of the National Cancer Institute, 103(22), 1656-1664. https://doi.org/10.1093/jnci/djr393 DOI: https://doi.org/10.1093/jnci/djr393

Einbeigi, Z., Bergman, A., Kindblom, L. G., Martinsson, T., Meis-Kindblom, J. M., Nordling, M., Suurküla, M., Wahlström, J., Wallgren, A., & Karlsson, P. (2001). A Founder Mutation of the BRCA1 Gene in Western Sweden Associated with a High Incidence of Breast and Ovarian Cancer. European Journal of Cancer, 37(15), 1904-1909. https://doi.org/10.1016/S0959-8049(01)00223-4 DOI: https://doi.org/10.1016/S0959-8049(01)00223-4

Ellis, M. J., Tao, Y., Luo, J., A’Hern, R., Evans, D. B., Bhatnagar, A. S., Chaudri Ross, H. A., von Kameke, A., Miller, W. R., Smith, I., Eiermann, W., & Dowsett, M. (2008). Outcome prediction for estrogen receptor-positive breast cancer based on post neoadjuvant endocrine therapy tumor characteristics. Journal of the National Cancer Institute, 100(19), 1380-1388. https://doi.org/10.1093/jnci/djn309 DOI: https://doi.org/10.1093/jnci/djn309

Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. New England Journal of Medicine, 363(20), 1938-1948. https://doi.org/10.1056/NEJMra1001389 DOI: https://doi.org/10.1056/NEJMra1001389

Geyer, F. C., Rodrigues, D. N., Weigelt, B., & Reis-Filho, J. S. (2012). Molecular classification of estrogen receptor-positive/luminal breast cancers. Advances in Anatomic Pathology, 19(1), 39-53. https://doi.org/10.1097/PAP.0b013e31823fafa0 DOI: https://doi.org/10.1097/PAP.0b013e31823fafa0

Goldhirsch, A., Winer, E. P., Coates, A. S., Gelber, R. D., Piccart-Gebhart, M., Thürlimann, B., & Senn, H. J. (2013). Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Annals of Oncology, 24(9), 2206-2223. https://doi.org/10.1093/annonc/mdt303 DOI: https://doi.org/10.1093/annonc/mdt303

Harbeck, N., Gnant, M., Thomssen, C., & St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2016. Annals of Oncology, 27(8), 1478-1488. https://doi.org/10.1093/annonc/mdw173 DOI: https://doi.org/10.1093/annonc/mdw173

Henras, A. K., Soudet, J., Gérus, M., Lebaron, S., Caizergues-Ferrer, M., Mougin, A., & Henry, Y. (2008). The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Molecular Life Sciences, 65(15), 2334–2359. https://doi.org/10.1007/s00018-008-8027-0 DOI: https://doi.org/10.1007/s00018-008-8027-0

Inácio, A., Silva, A. L., & Pinto, J. (2011). Nonsense-mediated mRNA decay: mechanisms and human disease. Journal of Molecular Endocrinology, 47(1), R1-R15. https://doi.org/10.1530/JME-11-0020

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., & Speed, T.P. (2003). Exploration, Normalization, and Summaries of High-Density Oligonucleotide Array Probe Level Data. Biostatistics, 4(2), 249-264. https://doi.org/10.1093/biostatistics/4.2.249 DOI: https://doi.org/10.1093/biostatistics/4.2.249

Jackson, R. J., Hellen, C. U., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology, 11(2), 113-127. https://doi.org/10.1038/nrm2838 DOI: https://doi.org/10.1038/nrm2838

Kalimutho, M., Parsons, K., Mittal, D., López, J. A., Srihari, S., & Khanna, K. K. (2015). Targeted therapies for triple‐negative breast cancer: combating a stubborn disease. Trends in Pharmacological Sciences, 36(12), 822-846. https://doi.org/10.1016/j.tips.2015.08.009 DOI: https://doi.org/10.1016/j.tips.2015.08.009

Leonard, W. J., & Lin, J. X. (2000). Cytokine receptor signaling pathways. Journal of Allergy and Clinical Immunology, 105(5), 877-888. https://doi.org/10.1067/mai.2000.106465 DOI: https://doi.org/10.1067/mai.2000.106899

Locksley, R. M., Killeen, N., & Lenardo, M. J. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 104(4), 487-501. https://doi.org/10.1016/S0092-8674(01)00237-9 DOI: https://doi.org/10.1016/S0092-8674(01)00237-9

Loi, S., Sotiriou, C., Haibe-Kains, B., Lallemand, F., Conus, N. M., Piccart, M. J., Speed, T. P., & McArthur, G. A. (2009). Gene expression profiling identifies activated growth factor signaling in poor prognosis (Luminal-B) estrogen receptor-positive breast cancer. BMC Medical Genomics, 2, 37. https://doi.org/10.1186/1755-8794-2-37 DOI: https://doi.org/10.1186/1755-8794-2-37

Mabbott, N.A, Kenneth Baillie, J., Hume, D.A., & Freeman, T.C. (2004). Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology, 215(9-10), 724-736. https://doi.org/10.1016/j.imbio.2010.05.012 DOI: https://doi.org/10.1016/j.imbio.2010.05.012

O'Shea, J. J., & Murray, P. J. (2008). Cytokine signaling modules in inflammatory responses. Immunity, 28(4), 477-487. https://doi.org/10.1016/j.immuni.2008.03.002 DOI: https://doi.org/10.1016/j.immuni.2008.03.002

Perou, C. M., Sørlie, T., Eisen, M. B., Van De Rijn, M., Jeffrey, S. S., Rees, C. A., ... & Botstein, D. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747-752. https://doi.org/10.1038/35021093 DOI: https://doi.org/10.1038/35021093

Prasad, V. (2016). Perspective: The precision-oncology illusion. Nature, 537(7620), S63. https://doi.org/10.1038/537S63a DOI: https://doi.org/10.1038/537S63a

Reis-Filho, J. S., Weigelt, B., Fumagalli, D., & Sotiriou, C. (2010). Molecular profiling: moving away from tumor philately. Science Translational Medicine, 2(47), 47ps43. https://doi.org/10.1126/scitranslmed.3001329 DOI: https://doi.org/10.1126/scitranslmed.3001329

Sawicki, S. G., Sawicki, D. L., Youn, J. W., Whitt, M. A., Lee, J. Y., & Lyles, D. S. (2007). Functional and genetic analysis of viral polymerase gene-associated cis-acting RNA elements. Archives of Virology, 152(5), 989-1009. https://doi.org/10.1007/s00705-006-0906-4

Schilsky, R. L. (2010). Personalized medicine in oncology: The future is now. Nature Reviews Drug Discovery, 9(5), 363-366. https://doi.org/10.1038/nrd3132 DOI: https://doi.org/10.1038/nrd3181

Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer Statistics, 2019. CA: A Cancer Journal for Clinicians, 69(1), 7–34. https://doi.org/10.3322/caac.21551 DOI: https://doi.org/10.3322/caac.21551

Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., & Geisler, S. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences, 98(19), 10869-10874. https://doi.org/10.1073/pnas.191367098 DOI: https://doi.org/10.1073/pnas.191367098

Sørlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., Deng, S., Johnsen, H., Pesich, R., Geisler, S., Demeter, J., Perou, C. M., Lønning, P. E., Brown, P. O., Børresen-Dale, A., & Botstein, D. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences, 100(14), 8418-8423. https://doi.org/10.1073/pnas.0932692100 DOI: https://doi.org/10.1073/pnas.0932692100

Tan, P. K, Downey, T. J, Spitznagel Jr, E. L, Xu, P., Fu, D., Dimitrov, D. S, Lempicki, R. A, Raaka, B. M, & Cam, M. C. (2003). Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Research, 31(19), 5676-5684. https://doi.org/10.1093/nar/gkg763 DOI: https://doi.org/10.1093/nar/gkg763

Tsutsui, S., Ohno, S., Murakami, S., Kataoka, A., Kinoshita, J., & Hachitanda, Y. (2003). Prognostic significance of the coexpression of p53 protein and c-erbB2 in breast cancer. American Journal of Surgery, 185(2), 165-167. https://doi.org/10.1016/S0002-9610(02)01203-5 DOI: https://doi.org/10.1016/S0002-9610(02)01203-5

Walter, P., & Johnson, A. E. (1994). Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annual Review of Cell Biology, 10, 87-119. https://doi.org/10.1146/annurev.cb.10.110194.000511 DOI: https://doi.org/10.1146/annurev.cb.10.110194.000511